[PKUSC2018]真实排名

分类讨论

$1.$不进行翻倍操作

我们可以发现$[\lceil\frac{a[i]}{2}\rceil,a[i])$这个区间的数不会翻倍,其他部分随便选,假设有$x$个。

所以$ans=\displaystyle\binom{n-x-1}{k}$

$2.$进行翻倍操作

我们可以发现$[a[i],2a[i])$不翻倍,其余随便搞,假设有$x$个。

所以$ans=\displaystyle\binom{n-x}{k-x}$

注意$a[i]=0$时要特判一下。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <bits/stdc++.h>
#define RG register
#define MAXN 100010
#define For(i, a, b) for (register int i = a, ___u = b; i <= ___u; ++i)
#define ForDown(i, a, b) for (register int i = b, ___d = a; i >= ___d; --i)
#define cmax(i, j) ((i) < (j) ? (i) = (j) : (i))
#define cmin(i, j) ((i) > (j) ? (i) = (j) : (i))
#define dmax(i, j) ((i) > (j) ? (i) : (j))
#define dmin(i, j) ((i) < (j) ? (i) : (j))
#define ddel(i, j) ((i) > (j) ? (i) - (j) : (j) - (i))
#define dabs(i) ((i) > 0 ? (i) : -(i))
#define eps 1e-7
#define int long long
#define mod 998244353

using namespace std;

int n, k, a[MAXN], b[MAXN], fac[MAXN], ifac[MAXN];

int C(int n, int m) {
if(n < 0 || m < 0 || n < m) return 0;
return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
}

int calc(int l, int r) {
if (l > r) return 0;
return upper_bound(a + 1, a + 1 + n, r) - lower_bound(a + 1, a + 1 + n, l);
}

char B[1 << 20], *S = B, D[1 << 20], *A = D - 1;

inline void F(RG int &x) {
RG char *c = S;
for(; *c < 48; ++c);
x = 0;
for(; *c > 47; ++c) x = 10 * x + (*c ^ 48);
S = ++c;
}

inline void W(RG int x) {
static char C[20];
static int T;
while(C[++T] = 48 + x % 10, x /= 10);
while(*++A = C[T], --T);
*++A = '\n';
}

signed main() {
fread(B, 1, 1 << 20, stdin);
fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
For(i, 2, MAXN) fac[i] = fac[i - 1] * i % mod, ifac[i] = (mod - mod / i) * ifac[mod % i] % mod;
For(i, 2, MAXN) ifac[i] = ifac[i] * ifac[i - 1] % mod;
F(n), F(k);
For(i, 1, n) F(a[i]), b[i] = a[i];
sort(a + 1, a + n + 1);
For(i, 1, n) {
if(!b[i]) {
W(C(n, k));
continue;
}
int res = C(n - calc((b[i] + 1) / 2, b[i] - 1) - 1, k), tot = calc(b[i], b[i] * 2 - 1);
(res += C(n - tot, k - tot)) %= mod, W(res);
}
fwrite(D, 1, A - D, stdout);
return 0;
}